Actions

Difference between revisions of "Twinning by reticular pseudomerohedry"

From Online Dictionary of Crystallography

(Added German and Spanish translations (U. Mueller))
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<Font color="blue"> Maclage par pseudomériédrie réticulaire </Font> (''Fr''). <Font color="black"> Geminazione per pseudomeroedria reticolare</Font>(''It'')
+
<font color="blue">Maclage par pseudomériédrie réticulaire</font> (''Fr''). <font color="red">Verzwillingung durch reticulare Pseudomeroedie</font> (''Ge''). <font color="black">Geminazione per pseudomeroedria reticolare</font> (''It''). <font color="green">Macla por seudomeroedría reticular</font> (''Sp'').
  
 
= [[Twinning]] by reticular pseudomerohedry =
 
  
 
In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See [[twinning by pseudomerohedry]] and [[twinning by reticular merohedry]].
 
In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See [[twinning by pseudomerohedry]] and [[twinning by reticular merohedry]].
  
Chapter 3.3 of ''International Tables of Crystallography, Volume D''<br>
+
== See also ==
 +
*Chapter 3.3 of ''International Tables for Crystallography, Volume D''
  
[[Category:Fundamental crystallography]]
+
[[Category:Twinning]]

Latest revision as of 14:37, 20 November 2017

Maclage par pseudomériédrie réticulaire (Fr). Verzwillingung durch reticulare Pseudomeroedie (Ge). Geminazione per pseudomeroedria reticolare (It). Macla por seudomeroedría reticular (Sp).


In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See twinning by pseudomerohedry and twinning by reticular merohedry.

See also

  • Chapter 3.3 of International Tables for Crystallography, Volume D