Actions

Difference between revisions of "Twinning by reticular pseudomerohedry"

From Online Dictionary of Crystallography

m (Style edits to align with printed edition)
Line 1: Line 1:
<Font color="blue"> Maclage par pseudomériédrie réticulaire </Font> (''Fr''). <Font color="black"> Geminazione per pseudomeroedria reticolare</Font>(''It'')
+
<Font color="blue"> Maclage par pseudomériédrie réticulaire </Font> (''Fr''). <Font color="black"> Geminazione per pseudomeroedria reticolare</Font>(''It'').
  
 
= [[Twinning]] by reticular pseudomerohedry =
 
  
 
In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See [[twinning by pseudomerohedry]] and [[twinning by reticular merohedry]].
 
In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See [[twinning by pseudomerohedry]] and [[twinning by reticular merohedry]].
  
Chapter 3.3 of ''International Tables of Crystallography, Volume D''<br>
+
== See also ==
 +
*Chapter 3.3 of ''International Tables for Crystallography, Volume D''
  
 
[[Category:Twinning]]
 
[[Category:Twinning]]

Revision as of 17:56, 17 May 2017

Maclage par pseudomériédrie réticulaire (Fr). Geminazione per pseudomeroedria reticolare(It).


In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See twinning by pseudomerohedry and twinning by reticular merohedry.

See also

  • Chapter 3.3 of International Tables for Crystallography, Volume D