Difference between revisions of "Center"
From Online Dictionary of Crystallography
(initial definition) |
m (Ja) |
||
Line 1: | Line 1: | ||
− | <font color="blue">Centre</font> (''Fr''); <font color="red">Zentrum</font> (''Ge''); <font color="green">Centro</font> (''Sp''); <font color="black">Centro</font> (''It''). | + | <font color="blue">Centre</font> (''Fr''); <font color="red">Zentrum</font> (''Ge''); <font color="green">Centro</font> (''Sp''); <font color="black">Centro</font> (''It''); <font color="purple">中心</font> (''Ja''). |
Revision as of 15:39, 24 August 2014
Centre (Fr); Zentrum (Ge); Centro (Sp); Centro (It); 中心 (Ja).
The center (or centre) of a group G is the set Z(G) =
{ a in G : a*g = g*a for all g in G } of elements commuting with all elements of G.
The center is an Abelian group.
The center of a group G is always a normal subgroup of G, namely the kernel of the homomorphism mapping an element a of G to the inner automorphism fa: g → aga-1.