Actions

Difference between revisions of "Center"

From Online Dictionary of Crystallography

(initial definition)
 
m (Ja)
Line 1: Line 1:
<font color="blue">Centre</font> (''Fr''); <font color="red">Zentrum</font> (''Ge''); <font color="green">Centro</font> (''Sp''); <font color="black">Centro</font> (''It'').
+
<font color="blue">Centre</font> (''Fr''); <font color="red">Zentrum</font> (''Ge''); <font color="green">Centro</font> (''Sp''); <font color="black">Centro</font> (''It''); <font color="purple">中心</font> (''Ja'').
  
  

Revision as of 15:39, 24 August 2014

Centre (Fr); Zentrum (Ge); Centro (Sp); Centro (It); 中心 (Ja).


The center (or centre) of a group G is the set Z(G) = { a in G : a*g = g*a for all g in G } of elements commuting with all elements of G. The center is an Abelian group.

The center of a group G is always a normal subgroup of G, namely the kernel of the homomorphism mapping an element a of G to the inner automorphism fa: gaga-1.