Actions

Difference between revisions of "Semidirect product"

From Online Dictionary of Crystallography

m (Style edits to align with printed edition)
m (Tidied translations.)
Line 1: Line 1:
<font color="blue">Produit semi-direct</font> (''Fr''). <font color="red">Semidirektes Produkt</font> (''Ge''). <font color="green">Producto semidirecto</font> (''Sp''). <font color="brown">Полупрямое произведение</font> (''Ru''). <font color="black">Prodotto semidiretto</font> (''It''). <font color="purple">準直積</font> (''Ja'').  
+
<font color="blue">Produit semi-direct</font> (''Fr''). <font color="red">Semidirektes Produkt</font> (''Ge''). <font color="brown">Полупрямое произведение</font> (''Ru''). <font color="black">Prodotto semidiretto</font> (''It''). <font color="purple">準直積</font> (''Ja''). <font color="green">Producto semidirecto</font> (''Sp'').
 +
 
  
 
In group theory, a '''semidirect product''' describes a particular way in which a group can be put together from two subgroups, one of which is [[normal subgroup|normal]].
 
In group theory, a '''semidirect product''' describes a particular way in which a group can be put together from two subgroups, one of which is [[normal subgroup|normal]].

Revision as of 08:42, 20 November 2017

Produit semi-direct (Fr). Semidirektes Produkt (Ge). Полупрямое произведение (Ru). Prodotto semidiretto (It). 準直積 (Ja). Producto semidirecto (Sp).


In group theory, a semidirect product describes a particular way in which a group can be put together from two subgroups, one of which is normal.

Let G be a group, N a normal subgroup of G (i.e. NG) and H a subgroup of G. G is a semidirect product of N and H if there exists a homomorphism GH which is the identity on H and whose kernel is N. This is equivalent to saying that:

  • G = NH and NH = {1} (where '1' is the identity element of G).
  • G = HN and NH = {1}.
  • Every element of G can be written as a unique product of an element of N and an element of H.
  • Every element of G can be written as a unique product of an element of H and an element of N.

One also says that `G splits over N'.